

Analytical Analysis:

Software and Hardware
__

Active Prosthesis

Felicity Escarzaga

Team 18F-12 Active Prosthetic

ME 476C-5 Mechanical Engineering Design

 November 9, 2018

Felicity E.

1

1 Introduction

This report covers the hardware and software that will be used for the Active Prosthesis project.

For a prosthesis to be active, it must use some electrical components actuate. In this project,

these components must allow the prosthesis to be able to sense objects, activate when desired,

and provide haptic feedback. Therefore, an analytical analysis of the available hardware and

coding for the software will need to be performed. Since the final inputs and outputs are still to

be determined, the code will take distance sensor readings and use those readings to actuate a

motor. The readings will represent the inputs and the motor will represent the outputs for the

final design.

2 Hardware

The hardware used is important to determining the capabilities of the prosthetic. If the hardware

cannot perform the function to meet the customer requirements well, then better hardware and

further prototyping is needed. To reduce unnecessary spending on hardware prototyping, a

comparison of the hardware can be used to determine the best equipment properties and

compatibility. Compatibility is one of the important aspect of this analysis. The system will not

operate if the equipment is not compatible with all hardware included, or if some hardware

requires the same pins.

2.1 Distance Sensor

Three distance sensors were compared from three different companies Sparkfun, Amazon, and

Polulu [1-3]. All sensors collected to meet a distance range from 0.5 in to 6 in, which is

approximately the distance needed to determine if the prosthetic is reaching to grab an object.

Table 2.1 compares the important properties of each sensor which includes range, voltage

needed, type, pins needed, and cost.

Table 2.1- Distance Sensors

Distance Sensor Range Voltage Type Pins Needed Cost

ZX Distance and

Gesture Sensor 0 - 12 in 3.3V - 5V Laser 5 24.95

Elegoo HC-SR04 0.78 - 157 in 5 V Sound 4 9.78

Pololu Carrier with

Sharp

GP2Y0D815Z0F

Digital Distance

Sensor 15cm 0.2 - 6 in 5 V Laser 6 9.75

From this table it appears the best sensor to choose is the Elegoo sensor because it has the

largest range and the lowest price. However, the Elegoo has an uncertainty of ±3 in. The

https://www.sparkfun.com/products/13162
https://www.sparkfun.com/products/13162
https://www.amazon.com/Elegoo-HC-SR04-Ultrasonic-Distance-MEGA2560/dp/B01COSN7O6/ref=sr_1_4?ie=UTF8&qid=1541821465&sr=8-4&keywords=distance+sensor
https://www.pololu.com/product/2465
https://www.pololu.com/product/2465
https://www.pololu.com/product/2465
https://www.pololu.com/product/2465
https://www.pololu.com/product/2465

Felicity E.

2

uncertainty for the other two sensors were not listed but can be assumed to be lower due to

their smaller range and the type of sensor used. The Elegoo uses a sonic type sensor while the

other sensors use optical laser sensors. Polulu is the cheapest option but requires six pins. The

ZX sensor is the most expensive but requires only five pins.

It was determined that the ZX sensor would be the best sensor option since it has a range

including zero. At zero range the prosthetic could receive information the it is not touch the

object. Furthermore, since it is also a guestor sense it could be used in the future to determine

user intention.

2.2 Motor

The three motors listed in Table 2.2 are from the same companies listed in section 2.1. Each

motor was evaluated using the properties: input voltage, current required, speed, shaft size, and

cost. All properties are important, however, shaft size is not important until further in the design

when the attachment is determined.

Table 2.2 - Motor

Motor Input Voltage Amps Speed Shaft Torque Cost

URBEST 12V 0.6 A 300 RPM

3 mm

/0.118" 7 oz-in 11.99

131:1 Metal

Gearmotor

37Dx57L mm 12V / 6V 300 mA 80 RPM 6 mm 250 oz-in 24.95

Stepper Motor 3.2 V 2.0 A 200 SPR 6.35 mm 125 oz-in 30.95

Voltage required is similar for the first two motors but drops for the stepper motor. The stepper

motor provides the best torque output for the lowest voltage but it is the most expensive and the

voltage drop is balanced by a current increase. The stepper would allow for control of fine

movements at 200 steps per revolution, but will increase the overall cost for the motor and the

motor driver with the current increase. The URBEST is the least expensive but has the lowest

torque and would not produce the required force. The 131:1 Metal Gearmotor is therefore the

best option for the prosthesis.

2.3 Motor Driver

In Table 2.3, the motor drivers are compared by the number of motors they can operate at the

same time, the current that can be ran per channel, whether an additional power supply (other

than the microcontroller vin) can be added, the shield compatibility, and the cost. An additional

company’s board was considered from adafruit.

Table 2.3 - Motor Drivers

https://www.amazon.com/300RPM-Torque-Electric-Geared-Motor/dp/B0080DL25Q
https://www.pololu.com/product/1107
https://www.pololu.com/product/1107
https://www.pololu.com/product/1107
https://www.sparkfun.com/products/13656

Felicity E.

3

Motor Driver

Number of

Motors Amps/Channel

Additional Power

Supply

Shield

Compatible Cost

SparkFun Ardumoto 2 2 A no R3 20.95

SparkFun Wireless

Motor Driver Shield 2 1.2 A yes R3, Xbee 26.95

Pololu Dual

VNH5019 Motor

Driver Shield for

Arduino 2 12 A yes R3 49.95

Adafruit

Motor/Stepper/Servo

Shield for Arduino v2

Kit - v2.3 4 1.2 A yes R3 19.95

It can be seen from the table that the best driver is the Adafruit motor shield. It is compatible

with all R3 arduino microcontrollers, produces enough current per channel to run four of the

motors selected, has additional power supply input available to power four motors, and it has

the lowest cost.

2.4 Arduino

Since Arduino is open source and available around the world, these microcontrollers were

chosen and compared amongst each other in Table 2.4. The controllers would need to meet the

previous hardware requirements from the components selected above and be able to

accommodate possibly multiple sensors.

Table 2.4 - Arduino Boards

Microcontroller

Attach-Interrupt

Pins

Operating/

Input

Voltage

CPU

Speed

Analog

In/Out

Digital

IO/PWM

Serial

Read

Pins

Shield

Compatible Cost

Mega 2560

2, 3, 18, 19,

20, 21

5 V / 7-12

V 16 MHz 16/0 54/15 3 R3 38.5

Micro 0, 1, 2, 3, 7

5 V / 7-12

V 16 MHz 12/0 20/7 1 N/A 19.8

Uno 2, 3

5 V / 7-12

V 16 MHz 6/0 14/6 1 R3 22

Zero

all digital pins,

except 4

3.3 V / 7-

12 V 48 MHz 6/1 14/10 1 R3 42.9

Due all digital pins

3.3 V / 7-

12 V 84 MHz 12/2 54/12 3 R3 35.5

https://www.sparkfun.com/products/14129
https://www.sparkfun.com/products/14285
https://www.sparkfun.com/products/14285
https://www.pololu.com/product/2507
https://www.pololu.com/product/2507
https://www.pololu.com/product/2507
https://www.pololu.com/product/2507
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/1438
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://www.arduino.cc/en/Main/ArduinoBoardMicro
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardZero
https://www.arduino.cc/en/Main/ArduinoBoardDue

Felicity E.

4

SparkFun

RedBoard 2, 3

3.3 V / 7-

15 V 16 MHz 6/0 14/6 1 R3 19.95

The Due was selected as the optimal microcontroller due to the number of digital, analog, and

attach-interrupt pins required to run multiple sensors and multiple motors. It also has extra serial

read pins that can be used to communicate wirelessly to other modules if needed in future

design. Finally, it is the cheapest option that meets all requirements and has processing speed

allowing for quicker response time from the prosthesis.

 3 Code

Using the hardware chosen the software and code can be written. Most arduino compatible

sensors and shields have libraries that are downloadable to the arduino IDE. These libraries

allow for easier coding of the components used and have some demo codes to show the

functions available from the library. Using these libraries and functions available, a validated

code can be generated run a motor using the sensor selected. The entire code can be found in

Appendix 6.1.

4 Results

The hardware chosen from this analysis is ZX sensor, Polulu motor, adafruit motor shield, and

arduino due. All the hardware is compatible with the microcontroller chosen and allows for

wireless connectivity, additional motors, extra sensors, and other future design modifications.

The code available in appendix 6.1 does run the motor as expected, however the distance

sensor could not be tested since it was not available before the deadline for the analysis.

https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/13975

Felicity E.

5

5 References

[1] "Pololu Robotics & Electronics," Pololu, 2018. [Online]. Available:
https://www.pololu.com/. [Accessed 3 11 2018].

[2] "SparkFun," Sparkfun, 2018. [Online]. Available: https://www.sparkfun.com/. [Accessed 31
10 2018].

[3] "Amazon," Amazon, 2018. [Online]. Available: https://www.amazon.com/. [Accessed 3 11
2018].

[4] "Adafruit," Adafruit, 2018. [Online]. Available: https://www.adafruit.com/. [Accessed 14 11
2018].

Felicity E.

6

6 Appendix

6.1 Code

//Library

#include <Wire.h>

#include <ZX_Sensor.h>

#include <Adafruit_MotorShield.h>

// Create motor shield object

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// Select motor

Adafruit_DCMotor *myMotor = AFMS.getMotor(1);

// Constants

const int ZX_ADDR = 0x10; // ZX Sensor I2C address

// Global Variables

ZX_Sensor zx_sensor = ZX_Sensor(ZX_ADDR);

uint8_t x_pos;

uint8_t z_pos;

uint8_t z_posnew = 0;

uint8_t z_posold = 0 ;

uint8_t dz_pos = 0;

void setup() {

 uint8_t ver;

 // Initialize Serial port

 Serial.begin(9600);

 // Initialize ZX Sensor (configure I2C and read model ID)

 if (zx_sensor.init()) {

 Serial.println("ZX Sensor initialization complete");

 } else {

 Serial.println("ZX Sensor initialization incomplete!");

 }

 // Read the model version number and ensure the library will work

 ver = zx_sensor.getModelVersion();

 if (ver == ZX_ERROR) {

Felicity E.

7

 Serial.println("Error reading model version number");

 } else {

 Serial.print("Model version: ");

 Serial.println(ver);

 }

 if (ver != ZX_MODEL_VER) {

 Serial.print("Model version needs to be ");

 Serial.print(ZX_MODEL_VER);

 Serial.print(" to work with this library. Stopping.");

 while (1);

 }

 // Read the register map version and ensure the library will work

 ver = zx_sensor.getRegMapVersion();

 if (ver == ZX_ERROR) {

 Serial.println("Error reading register map version number");

 } else {

 Serial.print("Register Map Version: ");

 Serial.println(ver);

 }

 if (ver != ZX_REG_MAP_VER) {

 Serial.print("Register map version needs to be ");

 Serial.print(ZX_REG_MAP_VER);

 Serial.print(" to work with this library. Stopping.");

 while (1);

 }

}

void loop() {

 // If there is position data available, read and print it

 if (zx_sensor.positionAvailable()) {

 z_posnew = zx_sensor.readZ();

 dz_pos = z_posold - z_posnew;

 }

 uint8_t i;

 Serial.print("tick");

 if (abs(dz_pos) > 0) {

 if (dz_pos > 10) {

 myMotor->run(FORWARD);

 myMotor->setSpeed(150);

 delay(10);

 }

 if (dz_pos < -10) {

 myMotor->run(BACKWARD);

Felicity E.

8

 myMotor->setSpeed(150);

 delay(10);

 }

 }

 if (zx_sensor.positionAvailable()) {

 z_pos = zx_sensor.readZ();

 if (z_pos != ZX_ERROR) {

 Serial.print(" Z: ");

 Serial.println(z_pos);

 }

 }

 Serial.print("tock");

 z_posold = z_posnew;

 Serial.print("tech");

 myMotor->run(RELEASE);

 delay(1000);

}

